On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions. Commentary on the article “Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures”, by Jurado-Oller et al., Biotechnology for Biofuels, published September 7, 2015; 8:149

نویسندگان

  • Alberto Scoma
  • Szilvia Z. Tóth
چکیده

BACKGROUND Under low O2 concentration (hypoxia) and low light, Chlamydomonas cells can produce H2 gas in nutrient-replete conditions. This process is hindered by the presence of O2, which inactivates the [FeFe]-hydrogenase enzyme responsible for H2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H2 production in hypoxia are not entirely understood, as much as culture conditions setting the optimal redox state in the chloroplast supporting long-lasting H2 production. The reducing power for H2 production can be provided by photosystem II (PSII) and photofermentative processes during which proteins are degraded via yet unknown pathways. In hetero- or mixotrophic conditions, acetate respiration was proposed to indirectly contribute to H2 evolution, although this pathway has not been described in detail. MAIN BODY Recently, Jurado-Oller et al. (Biotechnol Biofuels 8: 149, 7) proposed that acetate respiration may substantially support H2 production in nutrient-replete hypoxic conditions. Addition of low amounts of O2 enhanced acetate respiration rate, particularly in the light, resulting in improved H2 production. The authors surmised that acetate oxidation through the glyoxylate pathway generates intermediates such as succinate and malate, which would be in turn oxidized in the chloroplast generating FADH2 and NADH. The latter would enter a PSII-independent pathway at the level of the plastoquinone pool, consistent with the light dependence of H2 production. The authors concluded that the water-splitting activity of PSII has a minor role in H2 evolution in nutrient-replete, mixotrophic cultures under hypoxia. However, their results with the PSII inhibitor DCMU also reveal that O2 or acetate additions promoted acetate respiration over the usually dominant PSII-dependent pathway. The more oxidized state experienced by these cultures in combination with the relatively short experimental time prevented acclimation to hypoxia, thus precluding the PSII-dependent pathway from contributing to H2 production. CONCLUSIONS In Chlamydomonas, continuous H2 gas evolution is expected once low O2 partial pressure and optimal reducing conditions are set. Under nutrient-replete conditions, the electrogenic processes involved in H2 photoproduction may rely on various electron transport pathways. Understanding how physiological conditions select for specific metabolic routes is key to achieve economic viability of this renewable energy source.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H2 production pathways in nutrient-replete mixotrophic Chlamydomonas cultures under low light. Response to the commentary article “On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions,” by Alberto Scoma and Szilvia Z. Tóth

BACKGROUND A recent Commentary article entitled "On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions" by Dr. Scoma and Dr. Tóth, Biotechnology for Biofuels (2017), opened a very interesting debate about the H2 production photosynthetic-linked pathways occurring in Chlamydomonas cultures grown in acetate-containing media and incubated under hypoxia/anoxia co...

متن کامل

Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures

BACKGROUND Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of ph...

متن کامل

Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived chlamydomonas cells.

In Chlamydomonas reinhardtii cells, H2 photoproduction can be induced in conditions of sulfur deprivation in the presence of acetate. The decrease in photosystem II (PSII) activity induced by sulfur deprivation leads to anoxia, respiration becoming higher than photosynthesis, thereby allowing H2 production. Two different electron transfer pathways, one PSII dependent and the other PSII independ...

متن کامل

Effect of Different Nutrient Solutions on The Yield, Chemical Composition and Nitrate Accumulation of Lettuce in Soilless Culture System

An experiment was conducted to select the optimum nutrient solution for growing lettuce (Lactuca sativa L.) under hydroponic conditions (open system) and Shahrekord climate, as a completely randomized design with five different nutrient solutions and three replicates, in Shahrekord University. The nutrient solutions were: 1) Research Station for Floriculture and Greenhouse Vegetables (the Nethe...

متن کامل

Improved photobio-H2 production regulated by artificial miRNA targeting psbA in green microalga Chlamydomonas reinhardtii

Background Sulfur-deprived cultivation of Chlamydomonas reinhardtii, referred as "two-stage culture" transferring the cells from regular algal medium to sulfur-deplete one, has been extensively studied to improve photobio-H2 production in this green microalga. During sulfur-deprivation treatment, the synthesis of a key component of photosystem II complex, D1 protein, was inhibited and improved ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017